PropertyValue
?:abstract
  • Previous studies in MRL+/+ mice suggest involvement of oxidative stress (OS) in trichloroethene (TCE)-mediated autoimmunity. However, molecular mechanisms underlying the autoimmunity remain to be fully elucidated. Even though toll-like receptors (TLRs) and Nuclear factor (erythroid-derived 2)-like2 (Nrf2) pathways are implicated in autoimmune diseases (ADs), interplay of OS, TLR and Nrf2 in TCE-mediated autoimmune response remains unexplored. This study was, therefore, undertaken to clearly establish a link among OS, TLR4 and Nrf2 pathways in TCE-induced autoimmunity. Groups of female MRL+/+ mice were treated with TCE, sulforaphane (SFN, an antioxidant) or TCE + SFN (TCE, 10 mmol/kg, i.p., every 4th day; SFN, 8 mg/kg, i.p., every other day) for 6 weeks. TCE exposure led to greater formation of serum 4-hydroxynonenal (HNE)-protein adducts, HNE-specific circulating immune complexes (CICs) and protein carbonyls which were associated with significant increases in serum antinuclear antibodies (ANAs). Moreover, incubation of splenocytes from TCE-treated mice with HNE-modified proteins resulted in enhanced splenocyte proliferation and cytokine release evidenced by increased expression of cyclin D3, Cyclin-dependent kinase 6 (CDK6) and phospho-pRb as well as increased release of IL-6, TNF-α and INF-γ. More importantly, TCE exposure resulted in increased expression of TLR4, MyD88, IRAK4, NF-kB and reduced expression of Nrf2 and HO-1 in the spleen. Remarkably, SFN supplementation not only attenuated TCE-induced OS, upregulation in TLR4 and NF-kB signaling and downregulation of Nrf2, but also ANA levels. These results, in addition to providing further support to a role of OS, also suggest that an interplay among OS, TLR4 and Nrf2 pathways contributes to TCE-mediated autoimmune response. Attenuation of TCE-mediated autoimmunity by SFN provides an avenue for preventive and/or therapeutic strategies for ADs involving OS.
is ?:annotates of
?:creator
?:doi
  • 10.1016/j.taap.2020.115258
?:doi
?:journal
  • Toxicology_and_applied_pharmacology
?:license
  • unk
?:pmid
?:pmid
  • 33007382.0
?:publication_isRelatedTo_Disease
is ?:relation_isRelatedTo_publication of
?:source
  • Medline
?:title
  • Interplay and roles of oxidative stress, toll-like receptor 4 and Nrf2 in trichloroethene-mediated autoimmunity.
?:type
?:year
  • 2020-09-29

Metadata

Anon_0  
expand all