?:abstract
|
-
BACKGROUND: Dipeptidyl peptidase-4 (DPP4) is commonly targeted to achieve glycemic control and has potent anti-inflammatory and immunoregulatory effects. Recent structural analyses indicated a potential tight interaction between DPP4 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), raising a promising hypothesis that DPP4 inhibitor (DPP4i) drugs might be an optimal strategy for treating coronavirus disease 2019 (COVID-19) among patients with diabetes. However, there has been no direct clinical evidence illuminating the associations between DPP4i use and COVID-19 outcomes. AIM: To illuminate the associations between DPP4i usage and the adverse outcomes of COVID-19. METHODS: We conducted a multicenter, retrospective analysis including 2563 patients with type 2 diabetes who were hospitalized due to COVID-19 at 16 hospitals in Hubei Province, China. After excluding ineligible individuals, 142 patients who received DPP4i drugs and 1115 patients who received non-DPP4i oral anti-diabetic drugs were included in the subsequent analysis. We performed a strict propensity score matching (PSM) analysis where age, sex, comorbidities, number of oral hypoglycemic agents, heart rate, blood pressure, pulse oxygen saturation (SpO(2)) < 95%, CT diagnosed bilateral lung lesions, laboratory indicators, and proportion of insulin usage were matched. Finally, 111 participants treated with DPP4i drugs were successfully matched to 333 non-DPP4i users. Then, a linear logistic model and mixed-effect Cox model were applied to analyze the associations between in-hospital DPP4i use and adverse outcomes of COVID-19. RESULTS: After rigorous matching and further adjustments for imbalanced variables in the linear logistic model and Cox adjusted model, we found that there was no significant association between in-hospital DPP4i use (DPP4i group) and 28-d all-cause mortality (adjusted hazard ratio = 0.44, 95%CI: 0.09-2.11, P = 0.31). Likewise, the incidences and risks of secondary outcomes, including septic shock, acute respiratory distress syndrome, or acute organ (kidney, liver, and cardiac) injuries, were also comparable between the DPP4i and non-DPP4i groups. The performance of DPP4i agents in achieving glucose control (e.g., the median level of fasting blood glucose and random blood glucose) and inflammatory regulation was approximately equivalent in the DPP4i and non-DPP4i groups. Furthermore, we did not observe substantial side effects such as uncontrolled glycemia or acidosis due to DPP4i application relative to the use of non-DPP4i agents in the study cohort. CONCLUSION: Our findings demonstrated that DPP4i use is not significantly associated with poor outcomes of COVID-19 or other adverse effects of anti-diabetic treatment. The data support the continuation of DPP4i agents for diabetes management in the setting of COVID-19.
|