Property | Value |
?:abstract
|
-
A recent surge in finding new candidate vaccines and potential antivirals to tackle atypical pneumonia triggered by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) needs new and unexplored approaches in solving this global pandemic. The homotrimeric transmembrane spike (S) glycoprotein of coronaviruses which facilitates virus entry into the host cells is covered with N-linked glycans having oligomannose and complex sugars. These glycans provide a unique opportunity for their targeting via carbohydrate-binding agents (CBAs) which have shown their antiviral potential against coronaviruses and enveloped viruses. However, CBA–ligand interaction is not fully explored in developing novel carbohydrate-binding-based antivirals due to associated unfavorable responses with CBAs. CBAs possess unique carbohydrate-binding specificity, therefore, CBAs like mannose-specific plant lectins/lectin-like mimic Pradimicin-A (PRM-A) can be used for targeting N-linked glycans of S glycoproteins. Here, we report studies on the binding and stability of lectins (NPA, UDA, GRFT, CV-N and wild-type and mutant BanLec) and PRM-A with the S glycoprotein glycans via docking and MD simulation. MM/GBSA calculations were also performed for docked complexes. Interestingly, stable BanLec mutant (H84T) also showed similar docking affinity and interactions as compared to wild-type BanLec, thus, confirming that uncoupling the mitogenic activity did not alter the lectin binding activity of BanLec. The stability of the docked complexes, i.e. PRM-A and lectins with SARS-CoV-2 S glycoprotein showed favorable intermolecular hydrogen-bond formation during the 100 ns MD simulation. Taking these together, our predicted in silico results will be helpful in the design and development of novel CBA-based antivirals for the SARS-CoV-2 neutralization. Communicated by Ramaswamy H. Sarma
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
-
10.1080/07391102.2020.1851303
|
?:doi
|
|
?:journal
|
-
Journal_of_biomolecular_structure_&_dynamics
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/92b5d82107e98392bfbd3d90abfb5e62b94e16e5.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
is
?:relation_isRelatedTo_publication
of
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
Sensing the interactions between carbohydrate-binding agents and N-linked glycans of SARS-CoV-2 spike glycoprotein using molecular docking and simulation studies
|
?:type
|
|
?:year
|
|