PropertyValue
?:abstract
  • BACKGROUND Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS To train and to evaluate the performance of the developed model, three datasets were collected from resources of \'ChestX-ray14\', \'COVID-19 image data collection\', and \'Chest X-ray collection from Indiana University,\' respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.
?:creator
?:doi
?:doi
  • 10.3233/xst-200757
?:journal
  • Journal_of_X-ray_science_and_technology
?:license
  • unk
?:pmid
?:pmid
  • 33459685
?:publication_isRelatedTo_Disease
?:source
  • Medline
?:title
  • COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader.
?:type
?:year
  • 2021-01-11

Metadata

Anon_0  
expand all