?:abstract
|
-
After long arguments between positivism and falsificationism, the verification of universal hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple proposed the Raven Paradox. Then, Carnap used the increment of logical probability as the confirmation measure. So far, many confirmation measures have been proposed. Measure F proposed by Kemeny and Oppenheim among them possesses symmetries and asymmetries proposed by Elles and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many researchers. Based on the semantic information theory, a measure b* similar to F is derived from the medical test. Like the likelihood ratio, measures b* and F can only indicate the quality of channels or the testing means instead of the quality of probability predictions. Furthermore, it is still not easy to use b*, F, or another measure to clarify the Raven Paradox. For this reason, measure c* similar to the correct rate is derived. Measure c* supports the Nicod Criterion and undermines the Equivalence Condition, and hence, can be used to eliminate the Raven Paradox. An example indicates that measures F and b* are helpful for diagnosing the infection of Novel Coronavirus, whereas most popular confirmation measures are not. Another example reveals that all popular confirmation measures cannot be used to explain that a black raven can confirm “Ravens are black” more strongly than a piece of chalk. Measures F, b*, and c* indicate that the existence of fewer counterexamples is more important than more positive examples’ existence, and hence, are compatible with Popper’s falsification thought.
|