Property | Value |
?:abstract
|
-
BACKGROUND: The current outbreak of SARS-CoV-2 has spread to almost every country with more than three million confirmed cases and over two hundred thousand deaths as of April 28, 2020. Rapid first-line testing protocols are needed for outbreak control and surveillance. METHODS: We used computational and manual design to generate a suitable set of reverse transcription recombinase polymerase amplification (RT-RPA) primer and exonuclease probe, internally quenched (exo-IQ) probe sequences targeting the SARS-CoV-2 N gene. RT-RPA sensitivity was determined by amplification of in vitro transcribed RNA standards. Assay selectivity was demonstrated with a selectivity panel of 32 nucleic acid samples derived from common respiratory viruses. To validate the assay against full-length SARS-CoV-2 RNA, total viral RNA derived from cell culture supernatant and 19 nasopharyngeal swab samples (8 positive and 11 negative for SARS-CoV-2) were screened. All results were compared to established RT-qPCR assays. RESULTS: The 95% detection probability of the RT-RPA assay was determined to be 7.74 (95% CI: 2.87 - 27.39) RNA copies per reaction. The assay showed no cross-reactivity to any other screened coronaviruses or respiratory viruses of clinical significance. The developed RT-RPA assay produced 100% diagnostic sensitivity and specificity when compared to RT-qPCR (n=20). CONCLUSION: With a run time of 15 to 20 minutes and first results being available in under 7 minutes for high RNA concentrations, the reported assay constitutes one of the fastest nucleic acid based detection methods for SARS-CoV-2 to date and may provide a simple to use alternative to RT-qPCR for first-line screening at the point of need.
|
?:creator
|
|
?:doi
|
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/9ccef66b0fdb69552a0f601d953a73960c59fed9.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ)
|
?:type
|
|
?:year
|
|