PropertyValue
?:abstract
  • Previously, we have demonstrated that ACIS KEPTIDE™, a chemically modified peptide, selectively binds to ACE-2 receptor and prevents the entry of SARS-CoV2 virions in vitro in primate kidney Cells. However, it is not known if ACIS KEPTIDE™ attenuates the entry of SARS-CoV2 virus in vivo in lung and kidney tissues, protects health, and prevent death once applied through intranasal route. In our current manuscript, we demonstrated that the intranasal administration of SARS-CoV2 (1*106) strongly induced the expression of ACE-2, promoted the entry of virions into the lung and kidney cells, caused acute histopathological toxicities, and mortality (28%). Interestingly, thirty-minutes of pre-treatment with 50 μg/Kg Body weight ACIS normalized the expression of ACE-2 via receptor internalization, strongly mitigated that viral entry, and prevented mortality suggesting its prospect as a prophylactic therapy in the treatment of COVID-19. On the contrary, the peptide backbone of ACIS was unable to normalize the expression of ACE-2, failed to improve the health vital signs and histopathological abnormalities. In summary, our results suggest that ACIS is a potential vaccine-alternative, prophylactic agent that prevents entry of SARS-CoV2 in vivo, significantly improves respiratory health and also dramatically prevents acute mortality in K18-hACE2 humanized mice. Highlights ACIS KEPTIDE stimulates the internalization of ACE-2 receptor (Fig. 2) and buffers the membrane localization of ACE-2 receptors (Fig. 2, 6 & 8). Intranasal inoculation of SARS-CoV2 upregulates the expression of ACE-2 in lung epithelium (Fig.6) and kidney tubular cells (Fig.8). ACIS KEPTIDE normalizes the expression of ACE-2 in the kidney tubular cells of virus-treated K18-hACE2mice (Fig. 8). ACIS KEPTIDE™ completely prevents the entry of SARS-CoV2 in Bronchiolar epithelium (Fig.6), alveolar parenchyma (Fig. 6), and kidney tubular cells (Fig.8). ACIS KEPTIDE™ improves the pulmonary (Fig. 5) and renal pathological changes (Fig. 7) caused by the SARS-CoV2 virus insult. Intranasal administration of 0.05% Beta-propiolactone (βPL)-inactivated SARS-CoV2 (1 *106) causes significant death (28%) in K18-hACE2 humanized mice after 24 hrs of intranasal inoculation (Supplemental videos) suggesting that SARS-CoV2 does not require its infective properties and genetic mechanism to be functional to cause mortality. The peptide backbone of ACIS KEPTIDE™ provides much less and insignificant protection in the prevention of pathological changes in Lungs (Fig.5 & 6) and Kidney (Fig.7 & 8). Peptide failed to normalize the upscaled expression of ACE-2 in kidney tubular cells (Fig.8) of SARS-CoV2-treated K18-hACE2 mice.
is ?:annotates of
?:creator
?:doi
?:doi
  • 10.1101/2020.11.13.378257
?:externalLink
?:journal
  • bioRxiv
?:license
  • biorxiv
?:pdf_json_files
  • document_parses/pdf_json/32777b0f10b95fec0ab0d4721c461ae3c445efe7.json
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • BioRxiv; WHO
?:title
  • Intranasal Administration of ACIS KEPTIDE™ Prevents SARS-CoV2-Induced Acute Toxicity in K18-hACE2 Humanized Mouse Model of COVID-19: A Mechanistic Insight for the Prophylactic Role of KEPTIDE™ in COVID-19
?:type
?:year
  • 2020-11-16

Metadata

Anon_0  
expand all