PropertyValue
?:abstract
  • Background: COVID-19 has been quickly spreading, making it a serious public health threat. It is important to identify phenotypes to predict the severity of disease and design an individualized treatment. Methods: We collected data from 213 COVID-19 patients in Wuhan Pulmonary Hospital from January 1 to March 30, 2020. Principal component analysis (PCA) and cluster analysis were used to classify patients. Results: We identified three distinct subgroups of COVID-19. Cluster 1 was the largest group (52.6%) and characterized by oldest age, lowest cellular immune function, and albumin levels. 38.5% of subjects were grouped into Cluster 2. Most of the lab results in Cluster 2 fell between those of Clusters 1 and 3. Cluster 3 was the smallest cluster (8.9%), characterized by youngest age and highest cellular immune function. The incidence of respiratory failure, acute respiratory distress syndrome (ARDS), heart failure, and usage of non-invasive mechanical ventilation in Cluster 1 was significantly higher than others (P < 0.05). Cluster 1 had the highest death rate of 30.4% (P = 0.005). Although there were significant differences in age between Clusters 2 and 3 (P < 0.001), we found that there was no difference in demand for medical resources. Conclusions: We identified three distinct clusters of the COVID-19 patients. The results show that age alone could not be used to assess a patient\'s condition. Specifically, management of albumin, and immune function are important in reducing the severity of disease.
is ?:annotates of
?:creator
?:doi
?:doi
  • 10.3389/fmed.2020.570614
?:journal
  • Front_Med_(Lausanne)
?:license
  • cc-by
?:pdf_json_files
  • document_parses/pdf_json/e91f46d89d58f57db76cf7aee93a5797bb3b1f52.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7690648.xml.json
?:pmcid
?:pmid
?:pmid
  • 33282887.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • Identification of COVID-19 Clinical Phenotypes by Principal Component Analysis-Based Cluster Analysis
?:type
?:year
  • 2020-11-12

Metadata

Anon_0  
expand all