PropertyValue
?:abstract
  • COVID-19 patients present high incidence of kidney abnormalities, which are associated with poor prognosis and high mortality. Identification of SARS-CoV-2 in kidney of COVID-19 patients suggests renal tropism and direct infection. Presently, it is generally recognized that SARS-CoV-2 initiates invasion through binding of receptor-binding domain (RBD) of spike protein to host cell-membrane receptor ACE2, however, whether there is additional target of SARS-CoV-2 in kidney remains unclear. Kidney injury molecule-1 (KIM1) is a transmembrane protein that drastically up-regulated after renal injury. Here, binding between SARS-CoV2-RBD and the extracellular Ig V domain of KIM1 was identified by molecular simulations and co-immunoprecipitation, which was comparable in affinity to that of ACE2 to SARS-CoV-2. Moreover, KIM1 facilitated cell entry of SARS-CoV2-RBD, which was potently blockaded by a rationally designed KIM1-derived polypeptide. Together, the findings suggest KIM1 may mediate and exacerbate SARS-CoV-2 infection in a ‘vicious cycle’, and KIM1 could be further explored as a therapeutic target.
is ?:annotates of
?:creator
?:doi
  • 10.1101/2020.10.09.334052
?:doi
?:externalLink
?:journal
  • bioRxiv
?:license
  • biorxiv
?:pdf_json_files
  • document_parses/pdf_json/3bd3230d7e6415379d3bc1afaa01ca685d854026.json
?:publication_isRelatedTo_Disease
is ?:relation_isRelatedTo_publication of
?:sha_id
?:source
  • BioRxiv; WHO
?:title
  • Kidney injury molecule-1 is a potential receptor for SARS-CoV-2
?:type
?:year
  • 2020-10-10

Metadata

Anon_0  
expand all