PropertyValue
?:abstract
  • We present the first local, quantitative measurements of ion current filamentation and magnetic field amplification in interpenetrating plasmas, characterizing the dynamics of the ion Weibel instability. The interaction of a pair of laser-generated, counterpropagating, collisionless, supersonic plasma flows is probed using optical Thomson scattering (TS). Analysis of the TS ion-feature revealed anticorrelated modulations in the density of the two ion streams at the spatial scale of the ion skin depth c/ω_{pi}=120 µm, and a correlated modulation in the plasma current. The inferred current profile implies a magnetic field amplitude ∼30±6 T, corresponding to ∼1% of the flow kinetic energy, indicating that magnetic trapping is the dominant saturation mechanism.
is ?:annotates of
?:creator
?:journal
  • Phys_Rev_Lett
?:license
  • unk
?:publication_isRelatedTo_Disease
?:source
  • WHO
?:title
  • Measurement of Kinetic-Scale Current Filamentation Dynamics and Associated Magnetic Fields in Interpenetrating Plasmas
?:type
?:who_covidence_id
  • #32530650
?:year
  • 2020

Metadata

Anon_0  
expand all