PropertyValue
?:abstract
  • Endogenous retroviruses (ERVs) are ubiquitous in the vertebrate genomes. On occasion, hosts recruited retroviral genes to mediate their own biological functions, a process formally known as co-option or exaptation. Much remains unknown about the extent of retroviral gene co-option in vertebrates, although more than ten retroviral gene co-option events have been documented. Here, we use a phylogenomic approach to analyze more than 700 vertebrate genomes to uncover retroviral gene co-option taking place during the evolution of vertebrates. We identify a total of 177 independent retroviral gene co-option events in vertebrates, a majority of which have not been reported previously. Among these retroviral gene co-option events, 93 and 84 involve gag and env genes, respectively. More than 78.0% (138 out of 177) of retroviral gene co-option occurred within mammals. The gag and env co-option events share a generally similar temporal pattern with less frequent retroviral gene co-option identified in the deep branches, suggesting that retroviral gene co-option might have not been maintained for very long time periods. Moreover, we find co-opted retroviral genes are subject to different selection pressure, implying potentially diverse cellular functionality. Our study provides a comprehensive picture of co-opted retroviral genes during the evolution of vertebrates, and has implications in understanding the ancient evolution of vertebrate-retrovirus interaction.
is ?:annotates of
?:creator
?:journal
  • Mol._biol._evol
?:license
  • unk
?:publication_isRelatedTo_Disease
?:source
  • WHO
?:title
  • Frequent retroviral gene co-option during the evolution of vertebrates
?:type
?:who_covidence_id
  • #32667990
?:year
  • 2020

Metadata

Anon_0  
expand all