Property | Value |
?:abstract
|
-
Detection of SARS-CoV-2 in sewage have been employed by several researchers as an alternative early warning indicator of virus spreading in communities, covering both symptomatic and asymptomatic cases. A factor that can seriously mislead the quantitative measurement of viral copies in sewage is the adsorption of virus fragments onto the highly porous solids suspended in wastewater, making them inaccessible. This depends not only on the available amount of suspended solids, but also on the amount of other dissolved chemicals which may influence the capacity of adsorption. On this account, the present work develops a mathematical framework, at various degrees of spatial complexity, of a physicochemical model that rationalizes the quantitative measurements of total virus fragments in sewage as regards the adsorption of virus onto suspended solids and the effect of dissolved chemicals on it. The city of Thessaloniki in Greece is employed as a convenient case study to determine the values of model variables. The present data indicate the ratio of the specific absorption (UV254/DOC) over the dissolved oxygen (DO) as the parameter with the highest correlation with viral copies. This implies a strong effect on viral inaccessibility in sewage caused (i) by the presence of humic-like substances and (ii) by virus decay due to oxidation and metabolic activity of bacteria. The present results indicate suggest days where many fold corrections in the measurement of viral copies should be applied. As a result, although the detected RNA load in June 2020 is similar to that in April 2020, virus shedding in the city is about 5 times lower in June than in April, in line with the very low SARS-CoV-2 incidence and hospital admissions for COVID-19 in Thessaloniki in June.
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
-
10.1016/j.scitotenv.2020.142855
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/aafc1faa536526d549c5252b9741d980d9b5fc02.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
is
?:relation_isRelatedTo_publication
of
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
A Physicochemical Model for Rationalizing SARS-CoV-2 Concentration in Sewage. Case Study: The City of Thessaloniki in Greece
|
?:type
|
|
?:year
|
|