PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Department of Computing, FSKIK, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia.\', \'Department of Computing, FSKIK, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia. Electronic address: aws.alaa@gmail.com.\', \'Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq.\', \'College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq.\', \'Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq.\', \'Faculty of Electronic and Electrical Engineering, Universiti Tun Hussein Onn, 86400, Batu, Pahat, Johor, Malaysia.\']
?:citedBy
  • -1
?:creator
?:doi
  • S1876-0341(20)30558-X10.1016/j.jiph.2020.06.028
?:doi
?:hasPublicationType
?:journal
  • Journal of infection and public health
is ?:pmid of
?:pmid
?:pmid
  • 32646771
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 0.648
?:rankingScore_hIndex
  • 23
?:title
  • Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects.
?:type
?:year
  • 2020

Metadata

Anon_0  
expand all