PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Berlin Institute of Health (BIH), Berlin, Germany.\', \'Charité - Universitätsmedizin Berlin, Berlin, Germany.\', \'HIH - Health Innovation Hub of the Federal Ministry of Health, Berlin, Germany.\', \'Medical Department 2, Hematology/Oncology, University Hospital of Frankfurt, Frankfurt, Germany.\', \'Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany.\', \'German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.\', \'Berlin Institute of Health (BIH), Berlin, Germany. sylvia.thun@charite.de.\', \'Charité - Universitätsmedizin Berlin, Berlin, Germany. sylvia.thun@charite.de.\', \'Hochschule Niederrhein - University of Applied Sciences, Krefeld, Germany. sylvia.thun@charite.de.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1186/s12911-020-01374-w
?:hasPublicationType
?:journal
  • BMC medical informatics and decision making
is ?:pmid of
?:pmid
?:pmid
  • 33349259
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 0.812
?:rankingScore_hIndex
  • 56
?:title
  • The German Corona Consensus Dataset (GECCO): a standardized dataset for COVID-19 research in university medicine and beyond.
?:type
?:year
  • 2020

Metadata

Anon_0  
expand all