PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.\', \'Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Berlin, Germany.\', \'Einstein Center Digital Future, Berlin, Germany.\', \'Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.\', \'Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Department of Mathematical Modelling and Data Analysis, Berlin, Germany.\', \'Technische Universität Berlin, Uncertainty, Inverse Modeling and Machine Learning Group, Berlin, Germany.\', \'Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.\', \'Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany. falk.von-dincklage@charite.de.\', \'Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Berlin, Germany. falk.von-dincklage@charite.de.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1038/s41598-021-92475-7
?:hasPublicationType
?:journal
  • Scientific reports
is ?:pmid of
?:pmid
?:pmid
  • 34168198
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 1.533
?:rankingScore_hIndex
  • 122
?:title
  • Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia.
?:type
?:year
  • 2021

Metadata

Anon_0  
expand all