PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Institute of Psychology, Heidelberg University, Heidelberg, Germany.\', \'BioQuant - Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.\', \'Heidelberg Institute of Global Health, Heidelberg, Germany.\', \'Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.\', \'Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany.\', \'Center of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany.\', \'Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.\', \'Africa Health Research Institute, Durban, South Africa.\', \'Computer Vision and Learning Lab, Heidelberg University, Heidelberg, Germany.\']
?:citedBy
  • -1
?:creator
?:doi
  • 10.1371/journal.pcbi.1009472
?:doi
?:hasPublicationType
?:journal
  • PLoS computational biology
is ?:pmid of
?:pmid
?:pmid
  • 34695111
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 3.097
?:rankingScore_hIndex
  • 138
?:title
  • OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany.
?:type
?:year
  • 2021

Metadata

Anon_0  
expand all