PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA.\', \'Georgia Institute of Technology, Atlanta, Georgia 30332, USA.\', \'Kitware Inc., Clifton Park, New York 12065, USA.\', \'Ultrasound Laboratory, University of Trento, Trento, Italy.\', \'Azienda USL Toscana nord ovest Sede di Lucca, Diagnostic and Interventional Ultrasound Unit Lucca, Toscana, Italy.\', \'Pulmonary Medicine Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Roma, Lazio, Italy.\', \'BresciaMed, Brescia, Italy.\', \'Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico, San Matteo, Pavia, Italy.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1121/10.0007272
?:hasPublicationType
?:journal
  • The Journal of the Acoustical Society of America
is ?:pmid of
?:pmid
?:pmid
  • 34972274
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • -1.0
?:rankingScore_hIndex
  • -1
is ?:relation_isRelatedTo_publication of
?:title
  • Investigating training-test data splitting strategies for automated segmentation and scoring of COVID-19 lung ultrasound images.
?:type
?:year
  • 2021

Metadata

Anon_0  
expand all