PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Scuola Superiore Sant\'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy.\', \'IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci 269, 50143, Firenze, FI, Italy.\', \'Scuola Superiore Sant\'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy. scampagnini@dongnocchi.it.\', \'IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci 269, 50143, Firenze, FI, Italy. scampagnini@dongnocchi.it.\', \'IRCCS Fondazione Don Carlo Gnocchi, via Alfonso Capecelatro 66, 20148, Milano, FI, Italy.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1007/s11517-021-02479-8
?:hasPublicationType
?:journal
  • Medical & biological engineering & computing
is ?:pmid of
?:pmid
?:pmid
  • 34993693
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • -1.0
?:rankingScore_hIndex
  • -1
?:title
  • Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution.
?:type
?:year
  • 2022

Metadata

Anon_0  
expand all