PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Unit of Medical Physics, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy. matteo.chieregato@poliambulanza.it.\', \'Unit of Medical Physics, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy.\', \'Tattile s.r.l, 25030, Mairano, BS, Italy.\', \'Department of Diagnostic Imaging, Unit of Radiology, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy.\', \'Unit of Lean Managing, Fondazione Poliambulanza Istituto Ospedaliero, Information and Communications Technology, 25124, Brescia, Italy.\', \'Unit of Medical Physics, Spedali Civili, 25124, Brescia, Italy.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1038/s41598-022-07890-1
?:hasPublicationType
?:journal
  • Scientific reports
is ?:pmid of
?:pmid
?:pmid
  • 35288579
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 1.533
?:rankingScore_hIndex
  • 122
?:title
  • A hybrid machine learning/deep learning COVID-19 severity predictive model from CT images and clinical data.
?:type
?:year
  • 2022

Metadata

Anon_0  
expand all