PropertyValue
is ?:annotates of
?:authorAffiliation
  • [\'Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA.\', \'Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.\', \'Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. xlin@hsph.harvard.edu.\', \'Department of Statistics, Harvard University, Cambridge, MA, USA. xlin@hsph.harvard.edu.\', \'Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. xlin@hsph.harvard.edu.\', \'Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. bcleary@broadinstitute.org.\', \'Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA. dobriban@wharton.upenn.edu.\']
?:citedBy
  • -1
?:creator
?:doi
?:doi
  • 10.1038/s41467-022-29389-z
?:hasPublicationType
?:journal
  • Nature communications
is ?:pmid of
?:pmid
?:pmid
  • 35383149
?:publication_isRelatedTo_Disease
?:rankingScore_SJR
  • 6.582
?:rankingScore_hIndex
  • 198
?:title
  • Group testing via hypergraph factorization applied to COVID-19.
?:type
?:year
  • 2022

Metadata

Anon_0  
expand all