?:abstract
|
-
Patients with spinal muscular atrophy (SMA) are susceptible to the respiratory infections and might be at a heightened risk of poor clinical outcomes upon contracting coronavirus disease 2019 (COVID-19). In the face of the COVID-19 pandemic, the potential associations of SMA with the susceptibility to and prognostication of COVID-19 need to be clarified. We documented an SMA case who contracted COVID-19 but only developed mild-to-moderate clinical and radiological manifestations of pneumonia, which were relieved by a combined antiviral and supportive treatment. We then reviewed a cohort of patients with SMA who had been living in the Hubei province since November 2019, among which the only 1 out of 56 was diagnosed with COVID-19 (1.79%, 1/56). Bioinformatic analysis was carried out to delineate the potential genetic crosstalk between SMN1 (mutation of which leads to SMA) and COVID-19/lung injury-associated pathways. Protein-protein interaction analysis by STRING suggested that loss-of-function of SMN1 might modulate COVID-19 pathogenesis through CFTR, CXCL8, TNF and ACE. Expression quantitative trait loci analysis also revealed a link between SMN1 and ACE2, despite low-confidence protein-protein interactions as suggested by STRING. This bioinformatic analysis could give hint on why SMA might not necessarily lead to poor outcomes in patients with COVID-19.
|