PropertyValue
?:abstract
  • OBJECTIVES: We aimed to develop a simple algorithm to help early identification of SARS-CoV-2 infection patients with severe progression tendency. METHODS: The univariable and multivariable analysis were computed to identify the independent predictors of COVID-19 progression. The prediction model was established in a retrospective training set of 322 COVID-19 patients and was re-evaluated in a prospective validation set of 317 COVID-19 patients. RESULTS: The multivariable analysis identified age (OR = 1.061, p = 0.028), lactate dehydrogenase (LDH) (OR = 1.006, p = 0.037), and CD4 count (OR = 0.993, p = 0.006) as the independent predictors of COVID-19 progression. Consequently, the age-LDH-CD4 algorithm was derived as (age × LDH)/CD4 count. In the training set, the area under the ROC curve (AUROC) of age-LDH-CD4 model was significantly higher than that of single CD4 count, LDH, or age (0.92, 0.85, 0.80, and 0.75, respectively). In the prospective validation set, the AUROC of age-LDH-CD4 model was also significantly higher than that of single CD4 count, LDH, or age (0.92, 0.75, 0.81, and 0.82, respectively). The age-LDH-CD4 ≥ 82 has high sensitive (81%) and specific (93%) for the early identification of COVID-19 patients with severe progression tendency. CONCLUSIONS: The age-LDH-CD4 model is a simple algorithm for early identifying patients with severe progression tendency following SARS-CoV-2 infection, and warrants further validation.
?:creator
?:doi
?:doi
  • 10.1007/s15010-020-01446-z
?:journal
  • Infection
?:license
  • no-cc
?:pdf_json_files
  • document_parses/pdf_json/6c2331ddcbd2fb29db520f03487301e2b41548c0.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7240242.xml.json
?:pmcid
?:pmid
?:pmid
  • 32440918.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • A simple algorithm helps early identification of SARS-CoV-2 infection patients with severe progression tendency
?:type
?:year
  • 2020-05-21

Metadata

Anon_0  
expand all