PropertyValue
?:abstract
  • Rough surfaces in contact with a flow of fluid exhibit alternating no-slip and free shear boundary conditions at the solid-liquid and air-liquid interfaces, respectively, thereby potentially offering drag reduction benefits. The balance between the dynamic pressure in the flow and the restoring capillary pressure in the interasperity spaces determines the stability of the Cassie state of wettability and is a function of the relative extent of no-slip and free shear regions per unit surface area. In the present study, using a fractal representation of rough surface topography, an analytical model is developed to quantify the stability of the Cassie state of wettability as well as drag reduction and the friction factor for laminar flow in a rectangular channel between nonwetting multiscale rough surfaces. A systematic study is conducted to quantify the effects of fractal parameters of the surfaces and the flow Reynolds number on drag reduction and the friction factor. The studies are used to develop friction factor curves extending the classical Moody diagram to hydrophobic and superhydrophobic surfaces. On the basis of the studies, regime maps are derived for estimating the extent of drag reduction offered by hydrophobic and superhydrophobic surfaces, revealing that superhydrophobic surfaces do not always offer the best drag reduction performance. The application of the fractal model to practical topographies of nonwetting surfaces of copper, aluminum, and zinc oxide fabricated via electrodeposition and etching is also discussed.
is ?:annotates of
?:creator
?:journal
  • Langmuir
?:license
  • unk
?:publication_isRelatedTo_Disease
?:source
  • WHO
?:title
  • Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces
?:type
?:who_covidence_id
  • #33197195
?:year
  • 2020

Metadata

Anon_0  
expand all