PropertyValue
?:abstract
  • Malaria transmission-blocking vaccines (TBVs) are a critical tool for disease elimination. TBVs prevent completion of the developmental lifecycle of malarial parasites within the mosquito vector, effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen and structure-function studies have identified two Class II epitopes that induce potent transmission-blocking (T-B) antibodies. Here, we functionally screened new immunogens and down-selected to the UF6b construct that has two glycine-linked copies of the T-B epitopes. We established a process for manufacturing UF6b and evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-LSQ). UF6b:GLA-LSQ was immunogenic and immunofocused the humoral response to one of the key T-B epitopes resulting in potent T-B activity and establishing UF6b as a prime TBV candidate to aid in malaria elimination and eradication efforts.
is ?:annotates of
?:creator
?:doi
  • 10.1101/2020.11.29.402669
?:doi
?:externalLink
?:journal
  • bioRxiv
?:license
  • biorxiv
?:pdf_json_files
  • document_parses/pdf_json/564cc55e7ee471da26f5f0a67e55bcf7f204adac.json
?:publication_isRelatedTo_Disease
is ?:relation_isRelatedTo_publication of
?:sha_id
?:source
  • BioRxiv
?:title
  • Immunofocusing humoral immunity potentiates the functional efficacy of the AnAPN1 malaria transmission-blocking vaccine antigen
?:type
?:year
  • 2020-11-29

Metadata

Anon_0  
expand all