PropertyValue
?:abstract
  • BACKGROUND: There has been growing interest in data synthesis for enabling the sharing of data for secondary analysis; however, there is a need for a comprehensive privacy risk model for fully synthetic data: If the generative models have been overfit, then it is possible to identify individuals from synthetic data and learn something new about them. OBJECTIVE: The purpose of this study is to develop and apply a methodology for evaluating the identity disclosure risks of fully synthetic data. METHODS: A full risk model is presented, which evaluates both identity disclosure and the ability of an adversary to learn something new if there is a match between a synthetic record and a real person. We term this “meaningful identity disclosure risk.” The model is applied on samples from the Washington State Hospital discharge database (2007) and the Canadian COVID-19 cases database. Both of these datasets were synthesized using a sequential decision tree process commonly used to synthesize health and social science data. RESULTS: The meaningful identity disclosure risk for both of these synthesized samples was below the commonly used 0.09 risk threshold (0.0198 and 0.0086, respectively), and 4 times and 5 times lower than the risk values for the original datasets, respectively. CONCLUSIONS: We have presented a comprehensive identity disclosure risk model for fully synthetic data. The results for this synthesis method on 2 datasets demonstrate that synthesis can reduce meaningful identity disclosure risks considerably. The risk model can be applied in the future to evaluate the privacy of fully synthetic data.
is ?:annotates of
?:creator
?:doi
  • 10.2196/23139
?:doi
?:journal
  • J_Med_Internet_Res
?:license
  • cc-by
?:pdf_json_files
  • document_parses/pdf_json/c5bb2521c5c79a0da264d8c4b1773ca43c71d907.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7704280.xml.json
?:pmcid
?:pmid
?:pmid
  • 33196453.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model Development and Validation
?:type
?:year
  • 2020-11-16

Metadata

Anon_0  
expand all