Property | Value |
?:abstract
|
-
OBJECTIVE: This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. MATERIALS AND METHODS: The system presented is simulated with disease impact statistics from the Institute of Health Metrics (IHME), Center for Disease Control, and Census Bureau[1, 2, 3]. We present a robust pipeline for data preprocessing, future demand inference, and a redistribution algorithm that can be adopted across broad scales and applications. RESULTS: The reinforcement learning redistribution algorithm demonstrates performance optimality ranging from 93-95%. Performance improves consistently with the number of random states participating in exchange, demonstrating average shortage reductions of 78.74% (± 30.8) in simulations with 5 states to 93.50% (± 0.003) with 50 states. CONCLUSION: These findings bolster confidence that reinforcement learning techniques can reliably guide resource allocation for future public health emergencies.
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/a132571e45494dcc8a85d948e301fd866e39849b.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
On collaborative reinforcement learning to optimize the redistribution of critical medical supplies throughout the COVID-19 pandemic
|
?:type
|
|
?:year
|
|