PropertyValue
?:abstract
  • Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus Disease-2019 (COVID-19), is rapidly accumulating new mutations. Analysis of these mutations is necessary for gaining knowledge regarding different aspects of therapeutic development. Recently, we have reported a Sanger method based genome sequence of a viral isolate named SARS-CoV-2 NIB-1, circulating in Bangladesh. The genome has four novel mutations in V121D, V843F, A889V and G1691C positions. V121D substitution has the potential to destabilize the Non-Structural Protein (NSP-1) which inactivates the type-1 Interferon-induced antiviral system hence this mutant could be the basis of attenuated vaccines against SARS-CoV-V843F, A889V and G1691C are all located in NSP3. G1691C can decrease the flexibility of the protein while V843F and A889V changed the binding pattern of SARS-CoV-2 Papain-Like protease (PLPro) inhibitor GRL0617. V843F PLPro showed reduced affinity for Interferon Stimulating Gene-15 (ISG-15) protein whereas V843F+A889V double mutants exhibited the same binding affinity as wild type PLPro. Here, V843F is a conserved position of PLPro that damaged the structure but A889V, a less conserved residue, most probably neutralized that damage. Mutants of NSP1 could provide attenuated vaccines against coronavirus. Also, these mutations of PLPro could be targeted to develop anti-SARS therapeutics.
is ?:annotates of
?:creator
?:doi
  • 10.1101/2020.12.02.408229
?:doi
?:externalLink
?:journal
  • bioRxiv
?:license
  • biorxiv
?:pdf_json_files
  • document_parses/pdf_json/1bd611a9d39224031168f3b8bd1024f753b679d3.json
?:publication_isRelatedTo_Disease
is ?:relation_isRelatedTo_publication of
?:sha_id
?:source
  • BioRxiv; WHO
?:title
  • Novel Mutations in NSP1 and PLPro of SARS-CoV-2 NIB-1 Genome Mount for Effective Therapeutics
?:type
?:year
  • 2020-12-02

Metadata

Anon_0  
expand all