PropertyValue
?:abstract
  • BACKGROUND AND PURPOSE The coronavirus disease 2019 (COVID-19) pandemic has led to decreases in neuroimaging volume. Our aim was to quantify the change in acute or subacute ischemic strokes detected on CT or MR imaging during the pandemic using natural language processing of radiology reports. MATERIALS AND METHODS We retrospectively analyzed 32,555 radiology reports from brain CTs and MRIs from a comprehensive stroke center, performed from March 1 to April 30 each year from 2017 to 2020, involving 20,414 unique patients. To detect acute or subacute ischemic stroke in free-text reports, we trained a random forest natural language processing classifier using 1987 randomly sampled radiology reports with manual annotation. Natural language processing classifier generalizability was evaluated using 1974 imaging reports. RESULTS The natural language processing classifier achieved a 5-fold cross-validation classification accuracy of 0.97 and an F1 score of 0.74, with a slight underestimation (-5%) of actual numbers of acute or subacute ischemic strokes in cross-validation. Importantly, cross-validation performance stratified by year was similar. Applying the classifier to the complete study cohort, we found an estimated 24% decrease in patients with acute or subacute ischemic strokes reported on CT or MR imaging from March to April 2020 compared with the average from those months in 2017-2019. Among patients with stroke-related order indications, the estimated proportion who underwent neuroimaging with acute or subacute ischemic stroke detection significantly increased from 16% during 2017-2019 to 21% in 2020 (P = .01). The natural language processing classifier performed worse on external data. CONCLUSIONS Acute or subacute ischemic stroke cases detected by neuroimaging decreased during the COVID-19 pandemic, though a higher proportion of studies ordered for stroke were positive for acute or subacute ischemic strokes. Natural language processing approaches can help automatically track acute or subacute ischemic stroke numbers for epidemiologic studies, though local classifier training is important due to radiologist reporting style differences.
?:creator
?:doi
  • 10.3174/ajnr.a6961
?:doi
?:journal
  • AJNR._American_journal_of_neuroradiology
?:license
  • unk
?:pmid
?:pmid
  • 33334851
?:publication_isRelatedTo_Disease
?:source
  • Medline
?:title
  • Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports.
?:type
?:year
  • 2020-12-17

Metadata

Anon_0  
expand all