Property | Value |
?:abstract
|
-
We present a scheme to entangle two microwave fields by using the nonlinear magnetostrictive interaction in a ferrimagnet. The magnetostrictive interaction enables the coupling between a magnon mode (spin wave) and a mechanical mode in the ferrimagnet, and the magnon mode simultaneously couples to two microwave cavity fields via the magnetic dipole interaction. The magnon-phonon coupling is enhanced by directly driving the ferrimagnet with a strong red-detuned microwave field, and the driving photons are scattered onto two sidebands induced by the mechanical motion. We show that two cavity fields can be prepared in a stationary entangled state if they are respectively resonant with two mechanical sidebands. The present scheme illustrates a new mechanism for creating entangled states of optical fields, and enables potential applications in quantum information science and quantum tasks that require entangled microwave fields.
|
is
?:annotates
of
|
|
?:arxiv_id
|
|
?:creator
|
|
?:doi
|
-
10.1103/physrevlett.124.213604
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:source
|
|
?:title
|
-
Magnetostrictively induced stationary entanglement between two microwave fields
|
?:type
|
|
?:year
|
|