PropertyValue
?:abstract
  • PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has caught the world unprepared, with no prevention or treatment strategies in place. In addition to the efforts to develop an effective vaccine, alternative approaches are essential to control this pandemic, which will most likely require multiple readily available solutions. Among them, monoclonal anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been isolated by multiple laboratories in record time facilitated by techniques that were first pioneered for HIV-1 antibody discovery. Here, we summarize how lessons learned from anti-HIV-1 antibody discovery have provided fundamental knowledge for the rapid development of anti-SARS-CoV-2 antibodies. RECENT FINDINGS: Research laboratories that successfully identified potent broadly neutralizing antibodies against HIV-1 have harnessed their antibody discovery techniques to isolate novel potent anti-SARS-CoV-2 antibodies, which have efficacy in animal models. These antibodies represent promising clinical candidates for treatment or prevention of COVID-19. SUMMARY: Passive transfer of antibodies is a promising approach when the elicitation of protective immune responses is difficult, as in the case of HIV-1 infection. Antibodies can also play a significant role in post-exposure prophylaxis, in high-risk populations that may not mount robust immune responses after vaccination, and in therapy. We provide a review of the recent approaches used for anti-SARS-CoV-2 antibody discovery and upcoming challenges in the field.
is ?:annotates of
?:creator
?:journal
  • Curr_Opin_HIV_AIDS
?:license
  • unk
?:publication_isRelatedTo_Disease
?:source
  • WHO
?:title
  • COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research
?:type
?:who_covidence_id
  • #940835
?:year
  • 2021

Metadata

Anon_0  
expand all