PropertyValue
?:abstract
  • We present a scheme to entangle two microwave fields by using the nonlinear magnetostrictive interaction in a ferrimagnet. The magnetostrictive interaction enables the coupling between a magnon mode (spin wave) and a mechanical mode in the ferrimagnet, and the magnon mode simultaneously couples to two microwave cavity fields via the magnetic dipole interaction. The magnon-phonon coupling is enhanced by directly driving the ferrimagnet with a strong red-detuned microwave field, and the driving photons are scattered onto two sidebands induced by the mechanical motion. We show that two cavity fields can be prepared in a stationary entangled state if they are, respectively, resonant with two mechanical sidebands. The present scheme illustrates a new mechanism for creating entangled states of optical fields and enables potential applications in quantum information science and quantum tasks that require entangled microwave fields.
?:creator
?:journal
  • Phys_Rev_Lett
?:license
  • unk
?:publication_isRelatedTo_Disease
?:source
  • WHO
?:title
  • Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields
?:type
?:who_covidence_id
  • #32530657
?:year
  • 2020

Metadata

Anon_0  
expand all