Property | Value |
?:abstract
|
-
The entry of enveloped viruses requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad‐spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome‐lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40‐repeat protein suggest that the trp‐asp (WD) sequence is placed at distorted β‐meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo‐peptide sequence (myr‐WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo‐dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a ‘potential broad‐spectrum’ antiviral agent.
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/4f44999cc2204f4623af4e9b78c52718167edfb3.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
Translation of Mycobacterium Survival Strategy to Develop a Lipo‐peptide based Fusion Inhibitor
|
?:type
|
|
?:year
|
|