?:abstract
|
-
BACKGROUND: The purpose of this analysis was to assess the variations in COVID-19 related mortality in relation to the time differences in the commencement of virus circulation and containment measures in the European Region. METHODS: The data for the current analysis (N = 50 countries) were retrieved from the John Hopkins University dataset on the 7th of May 2020, with countries as study units. A piecewise regression analysis was conducted with mortality and cumulative incidence rates introduced as dependent variables and time interval (days from the 22nd of January to the date when 100 first cases were reported) as the main predictor. The country average life expectancy at birth and outpatient contacts per person per year were statistically adjusted for in the regression model. RESULTS: Mortality and incidence were strongly and inversely intercorrelated with days from January 22, respectively -0.83 (p<0.001) and -0.73 (p<0.001). Adjusting for average life expectancy and outpatients contacts per person per year, between days 33 to 50 from the 22nd of the January, the average mortality rate decreased by 30.1/million per day (95% CI: 22.7, 37.6, p<0.001). During interval 51 to 73 days, the change in mortality was no longer statistically significant but still showed a decreasing trend. A similar relationship with time interval was found for incidence. Life expectancy and outpatients contacts per person per year were not associated with mortality rate. CONCLUSION: Countries in Europe that had the earliest COVID-19 circulation suffered the worst consequences in terms of health outcomes, specifically mortality. The drastic social isolation measures, quickly undertaken in response to those initial outbreaks appear effective, especially in Eastern European countries, where community circulation started after March 11th. The study demonstrates that efforts to delay the early spread of the virus may have saved an average 30 deaths daily per one million inhabitants.
|