Property | Value |
?:abstract
|
-
One approach to delaying the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. Understanding the actual human mobility response to such policies remains a challenge owing to the lack of an observed and large-scale dataset describing human mobility during the pandemic. This study uses an integrated dataset, consisting of anonymized and privacy-protected location data from over 150 million monthly active samples in the USA, COVID-19 case data and census population information, to uncover mobility changes during COVID-19 and under the stay-at-home state orders in the USA. The study successfully quantifies human mobility responses with three important metrics: daily average number of trips per person; daily average person-miles travelled; and daily percentage of residents staying at home. The data analytics reveal a spontaneous mobility reduction that occurred regardless of government actions and a ‘floor’ phenomenon, where human mobility reached a lower bound and stopped decreasing soon after each state announced the stay-at-home order. A set of longitudinal models is then developed and confirms that the states\' stay-at-home policies have only led to about a 5% reduction in average daily human mobility. Lessons learned from the data analytics and longitudinal models offer valuable insights for government actions in preparation for another COVID-19 surge or another virus outbreak in the future.
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/56230cd40b36151361bf4c3ff3d03ba4ae8a1591.json
|
?:pmc_json_files
|
-
document_parses/pmc_json/PMC7811592.xml.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
Mobile device location data reveal human mobility response to state-level stay-at-home orders during the COVID-19 pandemic in the USA
|
?:type
|
|
?:year
|
|