Property | Value |
?:abstract
|
-
The covalent transfer of the AMP portion of ATP onto a target protein—termed adenylylation or AMPylation—by the human Fic protein HYPE/FICD has recently garnered attention as a key regulatory mechanism in endoplasmic reticulum homeostasis, neurodegeneration, and neurogenesis. As a central player in such critical cellular events, high-throughput screening (HTS) efforts targeting HYPE-mediated AMPylation warrant investigation. Herein, we present a dual HTS assay for the simultaneous identification of small-molecule activators and inhibitors of HYPE AMPylation. Employing the fluorescence polarization of an ATP analog fluorophore—Fl-ATP—we developed and optimized an efficient, robust assay that monitors HYPE autoAMPylation and is amenable to automated, high-throughput processing of diverse chemical libraries. Challenging our pilot screen with compounds from the LOPAC, Spectrum, MEGx, and NATx libraries yielded 0.3% and 1% hit rates for HYPE activators and inhibitors, respectively. Further, these hits were assessed for dose-dependency and validated via orthogonal biochemical AMPylation assays. We thus present a high-quality HTS assay suitable for tracking HYPE’s enzymatic activity, and the resultant first small-molecule manipulators of HYPE-promoted autoAMPylation.
|
is
?:annotates
of
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/37e403a612323eb833c76e318b5b5f49c32d5c91.json
|
?:pmc_json_files
|
-
document_parses/pmc_json/PMC7582957.xml.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
is
?:relation_isRelatedTo_publication
of
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
A Fluorescence Polarization-Based High-Throughput Screen to Identify the First Small-Molecule Modulators of the Human Adenylyltransferase HYPE/FICD
|
?:type
|
|
?:year
|
|