PropertyValue
?:abstract
  • COVID-19 is a widespread and highly contagious disease in the human population. COVID-19 is caused by SARS-CoV-2 infection. There is still a great demand for point-of-care tests for detection, epidemic prevention and epidemiological investigation, both now and after the epidemic. We present a lateral flow immunoassay kit based on a selenium nanoparticle-modified SARS-CoV-2 nucleoprotein, which detects anti-SARS-CoV-2 IgM and anti-SARS-CoV-2 IgG in human serum, and the results can be read by the naked eye in 10 minutes. We expressed and purified the SARS-CoV-2 nucleoprotein in HEK293 cells, with a purity of 98.14% and a concentration of 5 mg mL-1. Selenium nanoparticles were synthesized by l-ascorbic acid reduction of seleninic acid at room temperature. After conjugation with the nucleoprotein, a lateral flow kit was successfully prepared. The IgM and IgG detection limits of the lateral flow kit reached 20 ng mL-1 and 5 ng mL-1, respectively, in human serum. A clinical study sample comprising 90 COVID-19-diagnosed patients and 263 non-infected controls was used to demonstrate a sensitivity and specificity of 93.33% and 97.34%, respectively, based on RT-PCR and clinical results. No cross-reactions with rheumatoid factor and positive serum for anti-nuclear antibodies, influenza A, and influenza B were observed. Moreover, the lateral flow kit remained stable after storage for 30 days at 37 °C. Our results demonstrate that the selenium nanoparticle lateral flow kit can conveniently, rapidly, and sensitively detect anti-SARS-CoV-2 IgM and IgG in human serum and blood; it can also be suitable for the epidemiological investigation of COVID-19.
is ?:annotates of
?:creator
?:doi
?:doi
  • 10.1039/d0lc00828a
?:journal
  • Lab_on_a_chip
?:license
  • unk
?:pmid
?:pmid
  • 33064114
?:publication_isRelatedTo_Disease
?:source
  • Medline
?:title
  • A point-of-care selenium nanoparticle-based test for the combined detection of anti-SARS-CoV-2 IgM and IgG in human serum and blood.
?:type
?:year
  • 2020-10-16

Metadata

Anon_0  
expand all