PropertyValue
?:abstract
  • Viral whole-genome sequencing (WGS) provides critical insight into the transmission and evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Long-read sequencing devices from Oxford Nanopore Technologies (ONT) promise significant improvements in turnaround time, portability and cost, compared to established short-read sequencing platforms for viral WGS (e.g., Illumina). However, adoption of ONT sequencing for SARS-CoV-2 surveillance has been limited due to common concerns around sequencing accuracy. To address this, here we perform viral WGS with ONT and Illumina platforms on 157 matched SARS-CoV-2-positive patient specimens and synthetic RNA controls, enabling rigorous evaluation of analytical performance. We report that, despite the elevated error rates observed in ONT sequencing reads, highly accurate consensus-level sequence determination was achieved, with single nucleotide variants (SNVs) detected at >99% sensitivity and >99% precision above a minimum ~60-fold coverage depth, thereby ensuring suitability for SARS-CoV-2 genome analysis. ONT sequencing also identified a surprising diversity of structural variation within SARS-CoV-2 specimens that were supported by evidence from short-read sequencing on matched samples. However, ONT sequencing failed to accurately detect short indels and variants at low read-count frequencies. This systematic evaluation of analytical performance for SARS-CoV-2 WGS will facilitate widespread adoption of ONT sequencing within local, national and international COVID-19 public health initiatives.
is ?:annotates of
?:creator
?:doi
?:doi
  • 10.1038/s41467-020-20075-6
?:journal
  • Nat_Commun
?:license
  • cc-by
?:pdf_json_files
  • document_parses/pdf_json/cebfecb3d5350d355a1a959b09683ea19308c0ba.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7726558.xml.json
?:pmcid
?:pmid
?:pmid
  • 33298935.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis
?:type
?:year
  • 2020-12-09

Metadata

Anon_0  
expand all