PropertyValue
?:abstract
  • Since its outbreak in December 2019, the persistent coronavirus disease (COVID-19) became a global health emergency. It is imperative to develop a prognostic tool to identify high-risk patients and assist in the formulation of treatment plans. We retrospectively collected 366 severe or critical COVID-19 patients from four centers, including 70 patients who died within 14 days (labeled as high-risk patients) since their initial CT scan and 296 who survived more than 14 days or were cured (labeled as low-risk patients). We developed a 3D densely connected convolutional neural network (termed De-COVID19-Net) to predict the probability of COVID-19 patients belonging to the high-risk or low-risk group, combining CT and clinical information. The area under the curve (AUC) and other evaluation techniques were used to assess our model. The De-COVID19-Net yielded an AUC of 0.952 (95% confidence interval, 0.928-0.977) on the training set and 0.943 (0.904-0.981) on the test set. The stratified analyses indicated that our model\'s performance is independent of age, sex, and with/without chronic diseases. The Kaplan-Meier analysis revealed that our model could significantly categorize patients into high-risk and low-risk groups (p < 0.001). In conclusion, De-COVID19-Net can non-invasively predict whether a patient will die shortly based on the patient\'s initial CT scan with an impressive performance, which indicated that it could be used as a potential prognosis tool to alert high-risk patients and intervene in advance.
?:creator
?:doi
?:doi
  • 10.1109/jbhi.2020.3034296
?:journal
  • IEEE_journal_of_biomedical_and_health_informatics
?:license
  • unk
?:pmid
?:pmid
  • 33108303
?:publication_isRelatedTo_Disease
?:source
  • Medline
?:title
  • A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-center Study.
?:type
?:year
  • 2020-10-27

Metadata

Anon_0  
expand all