?:abstract
|
-
STUDY DESIGN: Prospective cross-sectional study OBJECTIVES: To investigate the effect of adding haptic input during walking in individuals with incomplete spinal cord injury (iSCI). SETTING: Research laboratory. METHODS: Participants with iSCI and age- and sex-matched able-bodied (AB) individuals walked normally (SCI n = 18, AB n = 17) and in tandem (SCI n = 12, AB n = 17). Haptic input was added through light touch on a railing. Step parameters, and mediolateral and anterior-posterior margins of stability (means and standard deviations) were calculated. Surface electromyography data were collected bilaterally from the tibialis anterior (TA), soleus (SOL), and gluteus medius (GMED) and integrated over a stride. Repeated measures ANOVAs examined within- and between-group differences (α = 0.05). Cutaneous and proprioceptive sensation of individuals with iSCI were correlated to changes in outcome measures that were affected by haptic input. RESULTS: When walking normally, adding haptic input decreased stride velocity, step width, stride length, MOSML, MOSML_SD, MOSAP, and MOSAP_SD, and increased GMED activity on the limb opposite the railing. During tandem walking, haptic input had no effect; however, individuals with iSCI had a larger step width SD and MOSML_SD compared with the AB group. Sensory abilities of individuals with iSCI were not correlated to any of the outcome measures that significantly changed with added haptic input. CONCLUSIONS: Added haptic input improved balance control during normal but not in tandem walking. Sensory abilities did not impact the use of added haptic input during walking.
|