?:abstract
|
-
Objective We analyzed the scientific output after COVID-19 and contrasted it with studies published in the aftermath of seven epidemics/pandemics: Severe Acute Respiratory Syndrome (SARS), Influenza A virus H5N1 and Influenza A virus H1N1 human infections, Middle East Respiratory Syndrome (MERS), Ebola virus disease, Zika virus disease, and Dengue. Design/Methodology/Approach We examined bibliometric measures for COVID-19 and the rest of studied epidemics/pandemics. Data were extracted from Web of Science, using its journal classification scheme as a proxy to quantify the multidisciplinary coverage of scientific output. We proposed a novel Thematic Dispersion Index (TDI) for the analysis of pandemic early stages. Results/Discussion The literature on the seven epidemics/pandemics before COVID-19 has shown explosive growth of the scientific production and continuous impact during the first three years following each emergence or re-emergence of the specific infectious disease. A subsequent decline was observed with the progressive control of each health emergency. We observed an unprecedented growth in COVID-19 scientific production. TDI measured for COVID-19 (29,4) in just six months, was higher than TDI of the rest (7,5 to 21) during the first three years after epidemic initiation. Conclusions COVID-19 literature showed the broadest subject coverage, which is clearly a consecuence of its social, economic, and political impact. The proposed indicator (TDI), allowed the study of multidisciplinarity, differentiating the thematic complexity of COVID-19 from the previous seven epidemics/pandemics. Originality/Value The multidisciplinary nature and thematic complexity of COVID-19 research were successfully analyzed through a scientometric perspective.
|