?:abstract
|
-
As a result of armed conflict, head trauma from exposure to blasts is an increasing critical health issue, particularly among military service members. Whilst numerous studies examined the burden of blast-related brain injuries on service members\', few systematic reviews have been published. This work provides a comprehensive summary of the evidence on blast-related mild traumatic brain injury (mTBI) burden in active U.S. military service members and inactive Veterans, describing characteristics and outcomes. Records published up to April 2017 were identified through a search of PubMed, Web of Science, Scopus, Ovid MEDLINE, and Cochrane Library. Records-based and original research reporting on U.S. military service members and Veterans with mild blast TBI were included. Data on subject characteristics, exposure, diagnostic criterion, and outcomes were extracted from included studies using a standardized extraction form and were presented narratively. Of the 2,290 references identified by the search, 106 studies with a total of 37,515 participants met inclusion criteria for blast-related mTBI. All but nine studies were based out of military or Veteran medical facilities. Unsurprisingly, men were over-represented (75-100%). The criteria used to define blast-related mTBI were consistent; however, the methodology used to ascertain whether individuals met those criteria for diagnosis were inconsistent. The diagnosis, most prevalent among the Army, heavily relied on self-reported histories. Commonly reported adverse outcomes included hearing disturbances and headaches. The most frequently associated comorbidities were post-traumatic stress disorder, depression, anxiety, sleep disorders, attention disorders, and cognitive disorders. The primary objective of this review was to provide a summary of descriptive data on blast-related mTBI in a U.S. military population. Low standardization of the methods for reaching diagnosis and problems in the study reporting emphasize the importance to collect high-quality data to fill knowledge gaps pertaining to blast-related mTBI.
|