Property | Value |
?:abstract
|
-
The amount of scientific papers published every day is daunting and constantly increasing. Keeping up with literature represents a challenge. If one wants to start exploring new topics it is hard to have a big picture without reading lots of articles. Furthermore, as one reads through literature, making mental connections is crucial to ask new questions which might lead to discoveries. In this work, I present a web tool which uses a Text Mining strategy to transform large collections of unstructured biomedical articles into structured data. Generated results give a quick overview on complex topics which can possibly suggest not explicitly reported information. In particular, I show two Data Science analyses. First, I present a literature based rare diseases network build using this tool in the hope that it will help clarify some aspects of these less popular pathologies. Secondly, I show how a literature based analysis conducted with PubSqueezer results allows to describe known facts about SARS-CoV-2. In one sentence, data generated with PubSqueezer make it easy to use scientific literate in any computational analysis such as machine learning, natural language processing etc. Availability: http://www.pubsqueezer.com
|
is
?:annotates
of
|
|
?:arxiv_id
|
|
?:creator
|
|
?:externalLink
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/bd5ce41d202f5fd9a455f533bbe96a9b6f431eef.json
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
PubSqueezer: A Text-Mining Web Tool to Transform Unstructured Documents into Structured Data
|
?:type
|
|
?:year
|
|