PropertyValue
?:abstract
  • The Government of India (GOI) announced a nationwide lockdown starting 25th March 2020 to contain the spread of COVID-19, leading to an unprecedented decline in anthropogenic activities and in turn improvements in ambient air quality. This is the first study to focus on highly time-resolved chemical speciation and source apportionment of PM$_{2.5}$ to assess the impact of the lockdown and subsequent relaxations on the sources of ambient PM$_{2.5}$ in Delhi, India. The elemental, organic, and black carbon fractions of PM$_{2.5}$ were measured at the IIT Delhi campus from February 2020 to May 2020. We report source apportionment results using positive matrix factorization (PMF) of organic and elemental fractions of PM$_{2.5}$ during the different phases of the lockdown. The resolved sources such as vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic aerosol (SVOOA) were found to decrease by 96%, 95%, and 86%, respectively, during lockdown phase-1 as compared to pre-lockdown. An unforeseen rise in O$_3$ concentrations with declining NO$_x$ levels was observed, similar to other parts of the globe, leading to the low-volatility oxygenated organic aerosols (LVOOA) increasing to almost double the pre-lockdown concentrations during the last phase of the lockdown. The effect of the lockdown was found to be less pronounced on other resolved sources like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, which were also swayed by the changing meteorological conditions during the four lockdown phases. The results presented in this study provide a basis for future emission control strategies, quantifying the extent to which constraining certain anthropogenic activities can ameliorate the ambient air.
is ?:annotates of
?:arxiv_id
  • 2011.08140
?:creator
?:externalLink
?:license
  • arxiv
?:pdf_json_files
  • document_parses/pdf_json/8fb493bf847995979b032b91c747628839d2def9.json
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • ArXiv
?:title
  • Variation in chemical composition and sources of PM$_{2.5}$ during the COVID-19 lockdown in Delhi
?:type
?:year
  • 2020-11-16

Metadata

Anon_0  
expand all