Property | Value |
?:abstract
|
-
Mott insulators under sufficiently strong spin-orbit coupling can display quantum spin liquid phases with topological order and fractional excitations. Quantum magnets with pure Kitaev spin exchange interactions can host a gapped quantum spin liquid with a single Majorana edge mode propagating in the counter-clockwise direction when a small positive magnetic field is applied. Here, we show how under a sufficiently strong positive magnetic field a topological transition into a gapped quantum spin liquid with two Majorana edge modes propagating in the clockwise direction occurs. The Dzyaloshinskii-Moriya interaction is found to turn the non-chiral Kitaev\'s gapless quantum spin liquid into a chiral one with equal Berry phases at the two Dirac points. Thermal Hall conductance experiments can provide evidence of the novel topologically gapped quantum spin liquid states predicted.
|
is
?:annotates
of
|
|
?:arxiv_id
|
|
?:creator
|
|
?:doi
|
|
?:doi
|
-
10.1103/physrevlett.124.217203
|
?:journal
|
|
?:license
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:source
|
|
?:title
|
-
Novel chiral quantum spin liquids in Kitaev magnets
|
?:type
|
|
?:year
|
|