PropertyValue
?:abstract
  • Balance control is accomplished by the anatomical link which provides the neural information for the coordination of skeletal muscles. However, there are few experimental proofs to directly show the neuroanatomical connection. Here, we examined the behavioral alterations by constructing an animal model with chemically induced unilateral labyrinthectomy (UL). In the experiment using rats (26 for UL, 14 for volume cavity, 355-498 g, male), the models were initially evaluated by the rota-rod (RR) test (21/26, 80.8%) and ocular displacement (23/26, 88.5%). The duration on the rolling rod decreased from 234.71 ± 64.25 s (4th trial before UL) to 11.81 ± 17.94 s (1st trial after UL). Also, the ocular skewed deviation (OSD) was observed in the model with left (5.79 ± 3.06°) and right lesion (3.74 ± 2.69°). Paw distance (PW) was separated as the front (FPW) and the hind side (HPW), and the relative changes of HPW (1.71 ± 1.20 cm) was larger than those of FPW (1.39 ± 1.06 cm), providing a statistical significance (p = 1.51 × 10-4, t test). Moreover, the results of the RR tests matched to those of the changing rates (18/21, 85.7%), and the changes (16/18, 88.9%) were dominantly observed in HPW (in FPW, 2/18, 11.1%). Current results indicated that the UL directly affected the changes in HPW more than those in FPW. In conclusion, the missing neural information from the peripheral vestibular system caused the abnormal posture in HPW, and the postural instability might reduce the performance during the voluntary movement shown in the RR test, identifying the relation between the walking imbalance and the unstable posture in PW. Graphical abstract.
is ?:annotates of
?:creator
?:doi
  • 10.1007/s11517-020-02276-9
?:doi
?:journal
  • Medical_&_biological_engineering_&_computing
?:license
  • unk
?:pmid
?:pmid
  • 33079344.0
?:publication_isRelatedTo_Disease
?:source
  • Medline
?:title
  • Postural control in paw distance after labyrinthectomy-induced vestibular imbalance.
?:type
?:year
  • 2020-10-20

Metadata

Anon_0  
expand all