?:abstract
|
-
As one of the most important fundamental problems in protein sequence analysis, protein remote homology detection is critical for both theoretical research (protein structure and function studies) and real world applications (drug design). Although several computational predictors have been proposed, their detection performance is still limited. In this study, we treat protein remote homology detection as a document retrieval task, where the proteins are considered as documents and its aim is to find the highly related documents with the query documents in a database. A protein similarity network was constructed based on the true labels of proteins in the database, and the query proteins were then connected into the network based on the similarity scores calculated by three ranking methods, including PSI-BLAST, Hmmer and HHblits. The PageRank algorithm and Hyperlink-Induced Topic Search (HITS) algorithm were respectively performed on this network to move the homologous proteins of query proteins to the neighbors of the query proteins in the network. Finally, PageRank and HITS algorithms were combined, and a predictor called HITS-PR-HHblits was proposed to further improve the predictive performance. Tested on the SCOP and SCOPe benchmark datasets, the experimental results showed that the proposed protocols outperformed other state-of-the-art methods. For the convenience of the most experimental scientists, a web server for HITS-PR-HHblits was established at http://bioinformatics.hitsz.edu.cn/HITS-PR-HHblits, by which the users can easily get the results without the need to go through the mathematical details. The HITS-PR-HHblits predictor is a protocol for protein remote homology detection using different sets of programs, which will become a very useful computational tool for proteome analysis.
|