?:abstract
|
-
To investigate the relationship between Bacille Calmette‐Guérin (BCG) vaccination and SARS‐CoV‐2 by a bioinformatics approach, two datasets for the SARS‐CoV‐2 infection group and BCG‐vaccinated group were downloaded. Differentially Expressed Genes were identified. Gene ontology and pathways were functionally enriched, and networking was constructed in NetworkAnalyst. Lastly, the correlation between post‐BCG vaccination and COVID‐19 transcriptome signatures was established. A total of 161 DEGs (113 upregulated DEGs and 48 downregulated genes) were identified in the SARS‐CoV‐2 group. In the pathway enrichment analysis, a cross‐reference of upregulated Kyoto Encyclopedia of Genes and Genomes pathways in SARS‐CoV‐2 with downregulated counterparts in the BCG‐vaccinated group, resulted in the intersection of 45 common pathways, accounting for 86.5% of SARS‐CoV‐2 upregulated pathways. Of these intersecting pathways, a vast majority were immune and inflammatory pathways with top significance in interleukin‐17, tumor necrosis factor, NOD‐like receptors, and nuclear factor‐κB signaling pathways. Given the inverse relationship of the specific differentially expressed gene pathways highlighted in our results, the BCG‐vaccine may play a protective role against COVID‐19 by mounting a nonspecific immunological response and further investigation of this relationship is warranted.
|