PropertyValue
?:abstract
  • SARS-CoV-2 is the etiological agent of COVID-19 and responsible for more than 6 million cases globally, for which no vaccine or antiviral is available. Therefore, this study was planned to investigate the antiviral role of the active constituents against spike glycoprotein of SARS-CoV-2 as well as its host ACE2 receptor. Structure-based drug design approach has been used to elucidate the antiviral activity of active constituents present in traditional medicinal plants from Ayurveda. Further, parameters like drug-likeness, pharmacokinetics, and toxicity were determined to ensure the safety and efficacy of active constituents. Gene network analysis was performed to investigate the pathways altered during COVID-19. The prediction of drug–target interactions was performed to discover novel targets for active constituents. The results suggested that amarogentin, eufoliatorin, α-amyrin, caesalpinins, kutkin, β-sitosterol, and belladonnine are the top-ranked molecules have the highest affinity towards both the spike glycoprotein and ACE2. Most active constituents have passed the criteria of drug-likeness and demonstrated good pharmacokinetic profile with minimum predicted toxicity level. Gene network analysis confirmed that G-protein coupled receptor, protein kinase B signaling, protein secretion, peptidyl-serine phosphorylation, nuclear transport, apoptotic pathway, tumor necrosis factor, regulation of angiotensin level, positive regulation of ion transport, and membrane protein proteolysis were altered during COVID-19. The target prediction analysis revealed that most active constituents target the same pathways which are found to be altered during COVID-19. Collectively, our data encourages the use of active constituents as a potential therapy for COVID-19. However, further studies are ongoing to confirm its efficacy against disease.
?:creator
?:doi
?:doi
  • 10.1080/07391102.2020.1832577
?:journal
  • Journal_of_biomolecular_structure_&_dynamics
?:license
  • no-cc
?:pdf_json_files
  • document_parses/pdf_json/91d1de323b6838832990282ebd406d5c090026ba.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7597308.xml.json
?:pmcid
?:pmid
?:pmid
  • 33073699.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection
?:type
?:year
  • 2020-10-19

Metadata

Anon_0  
expand all