Property | Value |
?:abstract
|
-
Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.
|
is
?:annotates
of
|
|
?:creator
|
|
?:journal
|
|
?:license
|
|
?:publication_isRelatedTo_Disease
|
|
is
?:relation_isRelatedTo_publication
of
|
|
?:source
|
|
?:title
|
-
Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3
|
?:type
|
|
?:who_covidence_id
|
|
?:year
|
|