PropertyValue
?:abstract
  • The frustrating interfacial issue between Li metal anode and solid electrolyte is the main obstacle that restricts the commercial promotion of solid-state batteries. Garnet-type ceramic electrolyte with high stability against metallic Li has drawn much attention, but it also suffers from huge interfacial resistance and Li dendrite penetration due to the unavoidable formation of carbonate passivation layer and limited interface contact. Herein, we propose a facile and effective method of flame vapor deposition to spray candle soot coating on garnet surface. It enables the reduction of carbonate layer and the conversion to highly lithiophilic interlayer especially when contacting with molten Li. The lithiophilicity is rooted in the enrichment of graphitic polycrystalline domains in candle soot, which can be chemically or electrochemically lithiated to form ionic/electronic dual conductive network containing LiC6 moieties. The candle soot interlayer binds Li metal with garnet electrolyte tightly with gradual transition of Li-ion conductivity, leading to a significant reduction of area specific resistance to 50 Ω•cm2 at 60℃ with high cycling and current endurance. Garnet based symmetric cells and solid-state full cells conducting this strategy exhibit impressive electrochemical reversibility and durability under the preservation of compact interface and smooth Li plating/striping. The modified Li/garnet/FeF3 batteries exhibit a discharge capacity as high as 500 mAh∙g-1 and long-term cyclability for at least 1500 cycles (with capacity preserved at 281.7 and 201 mAh∙g-1 at 100 and 200 μA•cm-2 respectively). This candle combustion strategy can be extended to more ceramic electrolytes compatible with high-temperature pretreatment.
is ?:annotates of
?:creator
?:doi
  • 10.1021/acsami.0c08203
?:doi
?:journal
  • ACS_applied_materials_&_interfaces
?:license
  • cc-by-nc
?:pmid
?:pmid
  • 32602697
?:publication_isRelatedTo_Disease
is ?:relation_isRelatedTo_publication of
?:source
  • Medline
?:title
  • Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte to Enable Ultralong Cycling Solid-State Li-FeF3 Conversion Batteries.
?:type
?:year
  • 2020-06-30

Metadata

Anon_0  
expand all